Imágenes de inervación miocárdica: MIBG en práctica clínica

Autores/as

DOI:

https://doi.org/10.54502/msuceva.v2n2a3

Palabras clave:

Imágenes, inervación cardíaca, insuficiencia cardíaca, función simpática, MIBG

Resumen

La 123I-metayodobencilguanidina (MIBG) es un análogo de norepinefrina radiomarcado que se puede usar para investigar la inervación simpática del miocardio. La gammagrafía con 123I-MIBG se ha investigado con interés en muchos contextos patológicos. En pacientes con insuficiencia cardiaca (IC) sistólica, la gammagrafía con 123I-MIBG puede detectar el deterioro funcional y la rarefacción de las terminales simpáticas (que se manifiestan como reducción de la relación corazón-mediastino [H/M] temprana y tardía en la gammagrafía planar) y aumento del flujo de salida simpático (que puede visualizarse como una alta tasa de lavado). Estos hallazgos se han asociado consistentemente con un peor resultado: más notablemente, un ensayo de fase 3, encontró que los pacientes con un H/M tardío 1.60, poseen una mayor incidencia de mortalidad cardiovascular y por todas las causas y arritmias potencialmente mortales durante un seguimiento de menos de 2 años. A pesar de estos hallazgos prometedores, la gammagrafía con 123I-MIBG aún no ha sido recomendada por las principales guías de IC como una herramienta para la estratificación del riesgo aditivo y nunca ha entrado en la etapa de adopción generalizada en la práctica clínica actual. La gammagrafía con 123I-MIBG también se ha evaluado en pacientes con infarto de miocardio, trastornos genéticos caracterizados por una mayor susceptibilidad a las arritmias ventriculares y varias otras condiciones caracterizadas por alteración de la inervación miocárdica simpática. En la presente revisión, se resumirá el estado del arte de la gammagrafía cardíaca con 123I-MIBG, los problemas actuales sin resolver y las posibles direcciones de la investigación futura.

 

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Alberto Aimo , Cardiology Division, University Hospital of Pisa, Italy; Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy

Cardiólogo en la Fondazione Toscana Gabriele Monasterio (una sección del Consejo Nacional de Investigación de Italia) y candidato a doctorado en la Scuola Superiore Sant'Anna en Pisa, Italia. Su actividad investigadora se ha centrado principalmente en la insuficiencia cardiaca y los miocardios en particular, la miocardiopatía dilatada idiopática y la amiloidosis cardiaca, pero también la afectación cardiaca en la enfermedad mitocondrial o las distrofias musculares. Sus principales campos de interés son el uso de biomarcadores o hallazgos de imagen como herramientas para el diagnóstico y manejo de la insuficiencia cardíaca y las miocardiopatías.

Alessia Gimelli, Fondazione Toscana Gabriele Monasterio, Pisa, Italy

Directora Médica. Departamento de Medicina Nuclear en la Fondazione Toscana/CNR"Gabriele Monasterio", Pisa, Italia. Ha publicado más de 150 artículos publicados en revistas indexadas en Scopus y WoS. Es editora actualmente de cuatro revistas Q1 y Q2: Imaging, European Journal of Cardiovascular Imaging; Journal of Nuclear Cardiology; International Journal of Cardiac Imaging. Es cardióloga y especialista en medicina nuclear. Desde 2013, lidera el sistema de aseguramiento de la calidad del departamento de medicina nuclear de la FTGM. En octubre de 2019 ganó la beca ESC: Women Transforming Leadership Program (WTLP) de la Saïd Business School de la Universidad de Oxford (Reino Unido). Tiene una amplia experiencia en investigación clínica sobre enfermedades cardiovasculares e imágenes cardiovasculares y ha contribuido a varios proyectos internacionales de alto perfil. Es miembro del Comité de Defensa de ESC (2020-2022) y fue vicepresidente de EACVI y presidente de la sección de cardiología nuclear y TC (2018-2020).

Citas

Zelt J, deKemp R, Rotstein B, Nair G, Narula J, Ahmadi A, et al. Nuclear imaging of the cardiac sympathetic nervous system: a

disease-specific interpretation in heart failure. JACC Cardiovasc Imaging 2020; 13: 1036–54. https://doi.org/10.1016/j.jcmg.2019.01.042 DOI: https://doi.org/10.1016/j.jcmg.2019.01.042

Schroeder C, Jordan J: Norepinephrine uptake mechanisms in cardiovascular disease deserve our attention. J Cardiovasc Pharmacol 2011; 58: 406–8. https://doi.org/10.1097/FJC.0B013E31822EAE22 DOI: https://doi.org/10.1097/FJC.0b013e31822eae22

Eisenhofer G: The role of neuronal and extraneuronal plasma membrane transporters in the inactivation of peripheral catecholamines. Pharmacol Ther 2001; 91: 35–62. https://doi.org/10.1016/s0163-7258(01)00144-9 DOI: https://doi.org/10.1016/S0163-7258(01)00144-9

Pandit-Taskar N, Modak S: Norepinephrine transporter as a target for imaging and therapy. J Nucl Med Off Publ Soc Nucl Med 2017; 58: 39s–53s. https://doi.org/10.2967/jnumed.116.186833 DOI: https://doi.org/10.2967/jnumed.116.186833

Patel AD, Iskandrian AE: MIBG imaging. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2002; 9: 75–94.

https://doi.org/10.1067/mnc.2002.121471 DOI: https://doi.org/10.1067/mnc.2002.121471

Kline R, Swanson D, Wieland D, Thrall J, Gross M, Pitt B, et al. Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med Off Publ Soc Nucl Med 1981; 22: 129–32. PMID: 7463156.

Flotats A, Carrió I, Agostini D, Marcassa C, Schafers M, Aernout Somsem G, et al.: Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM cardiovascular committee and the European council of nuclear cardiology. Eur J Nucl Med Mol Imaging 2010; 37: 1802–12. https://doi.org/10.1007/s00259-010-1491-4 DOI: https://doi.org/10.1007/s00259-010-1491-4

Radiation dose to patients from radiopharmaceuticals. A report of a task group of committees 2 of the international commission on radiological protection. Ann ICRP 1987; 18: 1–377. PMID: 3505163 DOI: https://doi.org/10.1016/0146-6453(87)90003-0

Verberne HJ, Verschure DO, Somsen GA, van Eck-Smit BL, Jacobson AF: Vascular time-activity variation in patients undergoing

I-MIBG myocardial scintigraphy: implications for quantification of cardiac and mediastinal uptake. Eur J Nucl Med Mol Imaging 2011; 38: 1132–8. https://doi.org/ 10.1007/s00259-011-1783-3 DOI: https://doi.org/10.1007/s00259-011-1783-3

Nakajima K, Matsumoto N, Kasai T, Matsuo S, Kiso K, Okuda K:Normal values and standardization of parameters in nuclear cardiology: Japanese Society of Nuclear Medicine working group database. Ann Nucl Med 2016; 30: 188–99. https://doi.org/ 10.1007/s12149-016-1065-z DOI: https://doi.org/10.1007/s12149-016-1065-z

Nakajima K, Okuda K, Matsuo S, Wakabayashi H, Kinuya S: Is (123)I-metaiodobenzylguanidine heart-to-mediastinum ratio dependent on age? From Japanese Society of Nuclear Medicine normal database. Ann Nucl Med 2018; 32: 175–81. DOI: https://doi.org/10.1007/s12149-018-1231-6

https://doi.org/ 10.1007/s12149-018-1231-6

Matsuo S, Nakajima K, Yamashina S, Sakata K, Momose M, Hashimoto J, et al.: Characterization of Japanese standards for myocardial sympathetic and metabolic imaging in comparison with perfusion imaging. Ann Nucl Med 2009; 23: 517–22.

https://doi.org/10.1007/s12149-009-0269-x DOI: https://doi.org/10.1007/s12149-009-0269-x

Jacobson AF, Travin MI: Impact of medications on mIBG uptake, with specific attention to the heart: comprehensive review of the literature. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2015; 22: 980–93. https://doi.org/10.1007/s12350-015-0170-z DOI: https://doi.org/10.1007/s12350-015-0170-z

Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG: Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 2010; 3: 92–100. https://doi.org/10.1016/j.jcmg.2009.07.014 DOI: https://doi.org/10.1016/j.jcmg.2009.07.014

Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL: Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 2008; 29: 1147–59. https://doi.org/10.1093/eurheartj/ehn113 DOI: https://doi.org/10.1093/eurheartj/ehn113

Kuwabara Y, Tamaki N, Nakata T, Yamashina S, Yamazaki J:Determination of the survival rate in patients with congestive heart failure stratified by 123I-MIBG imaging: a meta-analysis from the studies performed in Japan. Ann Nucl Med 2011; 25:

–7. https://doi.org/10.1007/s12149-010-0452-0 DOI: https://doi.org/10.1007/s12149-010-0452-0

Merlet P, Valette H, Dubois-Rande J, Moyse D, Duboc D, Dove P.et al.: Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med Off Publ Soc Nucl Med 1992; 33: 471–7.

Ebina T, Takahashi N, Mitani I, et al.: Clinical implications of cardiac (123)I-meta-iodobenzylguanidine scintigraphy and cardiac

natriuretic peptides in patients with heart disease. Nucl Med Commun 2002; 23: 795–801. https://doi.org/10.1097/00006231-200208000-00014 DOI: https://doi.org/10.1097/00006231-200208000-00014

Jacobson A, Senior R, Cerqueira M, Wong N, Thomas G, Lopez V, et al.: Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010; 55: 2212–21. https://doi.org/10.1016/j.jacc.2010.01.014 DOI: https://doi.org/10.1016/j.jacc.2010.01.014

Jacobson AF, Lombard J, Banerjee G, Camici PG: 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: design of two prospective multicenter international trials. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2009; 16: 113–21. https://doi.org/10.1007/s12350-008-9008-2 DOI: https://doi.org/10.1007/s12350-008-9008-2

Piña IL, Carson P, Lindenfeld J, Archambault WT, Jacobson AF: Persistence of (123)I-mIBG prognostic capability in relation to medical therapy in heart failure (from the ADMIRE-HF trial). The Am J Cardiol 2017; 119: 434–9. https://doi.org/ 10.1016/j.amjcard.2016.10.024 DOI: https://doi.org/10.1016/j.amjcard.2016.10.024

Narula J, Gerson M, Thomas GS, Cerqueira MD, Jacobson AF: 123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure: the ADMIRE-HFX study. J Nucl Med Off Publ Soc Nucl Med 2015; 56: 1011–8. https://doi.org/10.2967/jnumed.115.156406 DOI: https://doi.org/10.2967/jnumed.115.156406

Ketchum E, Jacobson A, Caldwell J, Senior R, Cerqueira M, Thomas G, et al.: Selective improvement in Seattle Heart Failure Model risk stratification using iodine-123 meta-iodobenzylguanidine imaging. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2012; 19: 1007–16. https://doi.org/ 10.1007/s12350-012-9603-0 DOI: https://doi.org/10.1007/s12350-012-9603-0

Koutelou M, Katsikis A, Flevari P, Theodorakis G, Livanis E, Georgiadis M, et al.: Predictive value of cardiac autonomic indexes

and MIBG washout in ICD recipients with mild to moderate heart failure. Ann Nucl Med 2009; 23: 677–84.

https://doi.org/10.1007/s12149-009-0289-6 DOI: https://doi.org/10.1007/s12149-009-0289-6

Arora R, Ferrick K, Nakata T, Kaplan R, Rozengarten M, Latif F, et al.: 2003I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol, 10: 121–31. https://doi.org/ 10.1067/mnc.2003.2 DOI: https://doi.org/10.1067/mnc.2003.2

Boogers M, Borleffs C, Henneman M, Van Bommel R, van Ramshorst J, Boersma E, et al.: Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol, 2010. 55: 2769–77. https://doi.org/10.1016/j.jacc.2009.12.066 DOI: https://doi.org/10.1016/j.jacc.2009.12.066

Nishisato K, Hashimoto A, Nakata T, Doi Y, Yamamoto H, Nagahara D, et al.: Impaired cardiac sympathetic innervation and myocardial perfusion is related to lethal arrhythmia: quantification of cardiac tracers in patients with ICDs. J Nucl Med Off Publ Soc Nucl Med 2010; 51: 1241–9. https://doi.org/10.2967/jnumed.110.074971 DOI: https://doi.org/10.2967/jnumed.110.074971

Agostini D, Belin A, Amar M, Darlas Y, Hamon M, Grollier G, et al.: Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. J Nucl Med Off Publ Soc Nucl Med 2000; 41: 845–51. PMID: 10809201

Cha Y, Oh J, Miyazaki C, Rea R, Shen W, Asirvatham S, et al.: Cardiac resynchronization therapy upregulates cardiac autonomic

control. J Cardiovasc Electrophysiol 2008; 19: 1045–52. https://doi.org/10.1111/j.1540-8167.2008.01190.x DOI: https://doi.org/10.1111/j.1540-8167.2008.01190.x

Suwa M, Otake Y, Moriguchi A, Ito T, Hirota Y, Kawamura K, et al.: Iodine-123 metaiodobenzylguanidine myocardial scintigraphy

for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 1997; 133: 353–8.

https://doi.org/10.1016/s0002-8703(97)70232-1 DOI: https://doi.org/10.1016/S0002-8703(97)70232-1

Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, et al.: Effects of perindopril on cardiac sympathetic nerve activity in patients with congestive heart failure: comparison with enalapril. Eur J Nucl Med Mol Imaging 2005; 32: 964–71. https://doi.org/10.1007/s00259-005-1786-z DOI: https://doi.org/10.1007/s00259-005-1786-z

Matsui T, Tsutamoto T, Maeda K, Kusukawa J, Kinoshita M: Prognostic value of repeated 123I-metaiodobenzylguanidine imaging in patients with dilated cardiomyopathy with congestive heart failure before and after optimized treatments–comparison with neurohumoral factors. Circ J Off J Jpn Circ Soc 2002; 66:

–43. https://doi.org/10.1253/circj.66.537 DOI: https://doi.org/10.1253/circj.66.537

Sakata K, Shirotani M, Yoshida H, Kurata C: Iodine-123 metaiodobenzylguanidine cardiac imaging to identify and localize vasospastic angina without significant coronary artery narrowing. J Am Coll Cardiol 1997; 30: 370–6.

https://doi.org/10.1016/s0735-1097(97)00159-9 DOI: https://doi.org/10.1016/S0735-1097(97)00159-9

Inobe Y, Kugiyama K, Miyagi H, Ohgushi M, Tomiguchi S, Takahashi M, et al.: Long-lasting abnormalities in cardiac sympathetic

nervous system in patients with coronary spastic angina: quantitative analysis with iodine 123metaiodobenzylguanidine myocardial scintigraphy. Am Heart J 1997; 134: 112–8. https://doi.org/10.1016/s0002-8703(97)70114-5 DOI: https://doi.org/10.1016/S0002-8703(97)70114-5

Langer A, Freeman MR, Josse RG, Armstrong PW: Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of

cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol 1995; 25: 610–8. https://doi.org/10.1016/0735-1097(94)00459-4 DOI: https://doi.org/10.1016/0735-1097(94)00459-4

Fallavollita JA, Canty JM, Jr.: Dysinnervated but viable myocardium in ischemic heart disease. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2010; 17: 1107–15. https://doi.org/10.1007/s12350-010-9292-5 DOI: https://doi.org/10.1007/s12350-010-9292-5

Matsunari I, Schricke U, Bengel F, Haase H, Barthel P, Schmidt G, et al.: Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000; 101: 2579–85.

https://doi.org/10.1161/01.CIR.101.22.2579 DOI: https://doi.org/10.1161/01.CIR.101.22.2579

Zipes DP: Ischemic modulation of myocardial innervation. Giornale italiano di cardiologia 1992; 22: 615–21.

Sasano T, Abraham M, Chang K, Ashikaga H, Mills J, Holt D,et al.: Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 2008; 51: 2266–75.

https://doi.org/10.1016/j.jacc.2008.02.062 DOI: https://doi.org/10.1016/j.jacc.2008.02.062

Minardo J, Tuli M, Mock B, Weiner R, Pride H, Wellman H, et al.: Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988; 78: 1008–19. https://doi.org/10.1161/01.CIR.78.4.1008 DOI: https://doi.org/10.1161/01.CIR.78.4.1008

Hartikainen J, Kuikka J, M€antysaari M, L€ansimies E, Py€or€al€a K: Sympathetic reinnervation after acute myocardial infarction. The Am J Cardiol 1996; 77: 5–9. https://doi.org/10.1016/s0002-9149(97)89125-4 DOI: https://doi.org/10.1016/S0002-9149(97)89125-4

Bengel FM, Barthel P, Matsunari I, Schmidt G, Schwaiger M: Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med Off Publ Soc Nucl Med 1999; 40: 904–10. PMID: 10452304.

Imamura Y, Ando H, Mitsuoka W, Egashira S, Masaki H, Ashihara T, et al.: Iodine-123 metaiodobenzylguanidine images reflect

intense myocardial adrenergic nervous activity in congestive heart failure independent of underlying cause. J Am Coll Cardiol 1995;

: 1594–9. https://doi.org/10.1016/0735-1097(95)00374-6 DOI: https://doi.org/10.1016/0735-1097(95)00374-6

Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin M, et al.: Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med Off Publ Soc Nucl Med 2001; 42: 1757–67. PMID: 11752070.

Bax J, Kraft O, Buxton A, Gunnar Fjeld J, Parízek P, Agostini D, et al.: 123 I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging 2008; 1:

–40. https://doi.org/10.1161/CIRCIMAGING.108.782433 DOI: https://doi.org/10.1161/CIRCIMAGING.108.782433

Sazonova S, Atabekov T, Batalov R, Mishkina A, Varlamova J, Zavadovsky K, et al.: Prediction of appropriate ICD therapy in patients with ischemic heart failure. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02321-y DOI: https://doi.org/10.1007/s12350-020-02321-y

Gimelli A, Menichetti F, Soldati E, Liga R, Scelza N, Zucchelli G, et al.: Predictors of ventricular ablation’s success: viability, innervation, or mismatch? J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2019, 28(1):175-183. https://doi.org/10.1007/s12350-018-01575-x DOI: https://doi.org/10.1007/s12350-018-01575-x

Ohshima S, Isobe S, Izawa H, Nanasato M, Ando A, Yamada A, et al.: 2005Cardiac sympathetic dysfunction correlates with abnormal myocardial contractile reserve in dilated cardiomyopathy patients. J Am Coll Cardiol, 46: 2061–8.

https://doi.org/10.1016/j.jacc.2005.08.046 DOI: https://doi.org/10.1016/j.jacc.2005.08.046

Ohshima S, Isobe S, Hayashi D, Abe S, Kato K, Murohara T: Myocardial 123I-MIBG scintigraphy predicts an impairment in myocardial functional reserve during dobutamine stress in patients with idiopathic dilated cardiomyopathy. Eur J Nucl Med Mol Imaging 2013; 40: 262–70. https://doi.org/10.1007/s00259-012-2256-z DOI: https://doi.org/10.1007/s00259-012-2256-z

Maeno M, Ishida Y, Shimonagata T, Hayashida K, Toyama T, Hirose Y, et al.: The significance of 201Tl/123I MIBG (metaiodobenzylguanidine) mismatched myocardial regions for predicting ventricular tachycardia in patients with idiopathic dilated cardiomyopathy. Kaku igaku The Jpn J Nucl Med 1993; 30: 1221–9. PMID: 8264112.

Christensen T, Bang L, Holmvang L, Skovgaard D, Oturai D, Søholm H, et al.: (123)I-MIBG scintigraphy in the subacute state of takotsubo cardiomyopathy. JACC Cardiovasc Imaging 2016; 9: 982–90. https://doi.org/10.1016/j.jcmg.2016.01.028 DOI: https://doi.org/10.1016/j.jcmg.2016.01.028

Cimarelli S, Sauer F, Morel O, Ohlmann P, Constantinesco A, Imperiale A: Transient left ventricular dysfunction syndrome: patho-physiological bases through nuclear medicine imaging. Int J Cardiol 2010; 144: 212–8.

https://doi.org/10.1016/j.ijcard.2009.04.025 DOI: https://doi.org/10.1016/j.ijcard.2009.04.025

Madias JE: Do we need MIBG in the evaluation of patients with suspected Takotsubo syndrome? Diagnostic, prognostic, and pathophysiologic connotations. Int J Cardiol 2016; 203: 783–4. https://doi.org/10.1016/j.ijcard.2015.11.046 DOI: https://doi.org/10.1016/j.ijcard.2015.11.046

Laursen A, Thune J, Hutchings M, Hasbak P, Kjaer A, Elming M, et al.: (123) I-MIBG imaging for detection of anthracyclineinduced cardiomyopathy. Clin Physiol Funct Imaging 2018 38: 176–85. https://doi.org/10.1111/cpf.12419 DOI: https://doi.org/10.1111/cpf.12419

Wakasugi S, Wada A, Hasegawa Y, Nakano S, Shibata N: Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with iodine-125-metaiodobenzylguanidine. J Nucl Med Off Publ Soc Nucl Med 1992;

:208–14. PMID: 1732442.

Jeon TJ, Lee JD, Ha JW, Yang WI, Cho SH: Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced

cardiomyopathy using iodine-1231 MIBG autoradiography and PGP 9.5 immunohistochemistry. Eur J Nucl Med 2000; 27: 686–93.

https://doi.org/10.1007/s002590050563 DOI: https://doi.org/10.1007/s002590050563

Bulten B, Verberne H, Bellersen L, Oyen W, Sabaté-Llobera A, Mavinkurve-Groothuis A, et al.: Relationship of promising

methods in the detection of anthracycline-induced cardiotoxicity in breast cancer patients. Cancer Chemother Pharmacol 2015; 76: 957–67. https://doi.org/10.1007/s00280-015-2874-9 DOI: https://doi.org/10.1007/s00280-015-2874-9

Nousiainen T, Vanninen E, Jantunen E, Remes J, Kuikka J, Hartikainen J: Anthracycline-induced cardiomyopathy: long-term effects on myocardial cell integrity, cardiac adrenergic innervation and fatty acid uptake. Clin Physiol (Oxford, England) 2001; 21: 123–8. https://doi.org/10.1046/j.1365-2281.2001.00292.x DOI: https://doi.org/10.1046/j.1365-2281.2001.00292.x

Cooper T, Willman VL, Jellinek M, Hanlon CR: Heart autotransplantation: effect on myocardial catecholamine and histamine.Science (New York, NY) 1962; 138: 40–1. https://doi.org/10.1126/science.138.3536.40 DOI: https://doi.org/10.1126/science.138.3536.40

De Marco T, Dae M, Yuen-Green M, Kumar S, Sudhir K, Keith F, et al.: Iodine-123 metaiodobenzylguanidine scintigraphic assessment of the transplanted human heart: evidence for late reinnervation. J Am Coll Cardiol 1995; 25: 927–31. DOI: https://doi.org/10.1016/0735-1097(94)00463-Z

https://doi.org/ 10.1016/0735-1097(94)00463-z

Norvell JE, Lower RR: Degeneration and regeneration of the nerves of the heart after transplantation. Transplantation 1973; 15: 337–44. https://doi.org/ 10.1097/00007890-197303000-00015 DOI: https://doi.org/10.1097/00007890-197303000-00015

Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M: Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 1999; 99:1866–71. DOI: https://doi.org/10.1161/01.CIR.99.14.1866

https://doi.org/ 10.1161/01.cir.99.14.1866

Uberfuhr P, Ziegler S, Schwaiblmair M, Reichart B, Schwaiger M: Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. Eur J Cardiothorac Surg 2000; 17: 161–8. DOI: https://doi.org/10.1016/S1010-7940(99)00367-X

https://doi.org/ 10.1016/s1010-7940(99)00367-x

Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M: Effect of sympathetic reinnervation on cardiac performance after heart transplantation. The New Engl J Med 2001; 345: 731–8. https://doi.org/10.1056/NEJMoa010519 DOI: https://doi.org/10.1056/NEJMoa010519

Bengel FM, Ueberfuhr P, Hesse T, et al.: Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 2002; 106: 831–5. https://doi.org/10.1161/01 DOI: https://doi.org/10.1161/01.CIR.0000025631.68522.9D

Aimo A, Buda G, Fontana M, Barison A, Vergaro G, Emdin M, et al.: Therapies for cardiac light chain amyloidosis: an update. Int

J Cardiol 2018; 271: 152–60. https://doi.org/ 10.1016/j.ijcard.2018.05.018

Aimo A, Castiglione V, Borrelli C, et al.: Oxidative stress and inflammation in the evolution of heart failure: from pathophysiology to therapeutic strategies. Eur J Prev Cardiol 2020: 2047487319870344. https://doi.org/ 10.1177/2047487319870344

Emdin M, Aimo A, Rapezzi C, Fontana M, Perfetto F, Seferovic P, et al.: Treatment of cardiac transthyretin amyloidosis: an update. Eur Heart J 2019; 40: 3699–706. https://doi.org/ 10.1093/eurheartj/ehz298 DOI: https://doi.org/10.1093/eurheartj/ehz298

Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk R, Ferrari V, et al.: ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-Diagnostic criteria and appropriate utilization. J Nucl Cardiol 2021, 14(7), e000030. https://doi.org/ 10.1161/HCI.0000000000000030

Piekarski E, Chequer R, Algalarrondo V, Eliahou L, Mahida B, Vigne N, et al.: Cardiac denervation evidenced by MIBG occurs earlier than amyloid deposits detection by diphosphonate scintigraphy in TTR mutation carriers. Eur J Nucl Med Mol Imaging 2018; 45: 1108–18. https://doi.org/ 10.1007/s00259-018-3963-x DOI: https://doi.org/10.1007/s00259-018-3963-x

Vergaro G, Genovesi D, Santonato V, Kusch A, et al.: Cardiac sympathetic denervation in wild-type transthyretin amyloidosis. Amyloid Int J Exp Clin Invest Off J Int Soc Amyloidosis 2020; 1–7.

Akutsu Y, Kaneko K, Kodama Y, Li H, Suyama J, Shinozuka A, et al.: Iodine-123 mIBG imaging for predicting the development of

atrial fibrillation. JACC Cardiovasc Imaging 2011; 4: 78–86. https://doi.org/ 10.1016/j.jcmg.2010.10.005 DOI: https://doi.org/10.1016/j.jcmg.2010.10.005

Arimoto T, Tada H, Igarashi M, Sekiguchi Y, Sato A, Koyama S, et al.: High washout rate of iodine-123-metaiodobenzylguanidine imaging predicts the outcome of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 2011; 22: 1297–304. https://doi.org/ 10.1111/j.1540-8167.2011.02123.x DOI: https://doi.org/10.1111/j.1540-8167.2011.02123.x

Wenning C, Lange P, Sch€ulke C, Vrachimis A, M€onnig G, Schober O, et al.: Pulmonary vein isolation in patients with paroxysmal atrial fibrillation is associated with regional cardiac sympathetic denervation. EJNMMI Res 2013; 3: 81. https://doi.org/ 10.1186/2191-219X-3-81 DOI: https://doi.org/10.1186/2191-219X-3-81

Lemery R, Ben-Haim S, Wells G, Ruddy TD: I-123-Metaiodobenzylguanidine imaging in patients with atrial fibrillation undergoing cardiac mapping and ablation of autonomic ganglia. Heart rhythm 2017; 14: 128–32. https://doi.org/ 10.1016/j.hrthm.2016.08.038 DOI: https://doi.org/10.1016/j.hrthm.2016.08.038

Stirrup J, Gregg S, Baavour R, Roth N, Breault C, Agostini D, et al.: Hybrid solid-state SPECT/CT left atrial innervation imaging for identification of left atrial ganglionated plexi: technique and validation in patients with atrial fibrillation. J Nucl Cardiol official Publ Am Soc Nucl Cardiol 2020. https://doi.org/ 10.1007/s12350-018-01535-5 DOI: https://doi.org/10.1007/s12350-018-01535-5

Teresínska A: I-123-MIBG cardiac innervation imaging in patients with atrial fibrillation. J Nucl Cardiol Off Publ Am Soc Nucl

Cardiol 2020, 6:1951-4. https://doi.org/ 10.1007/s12350-019-01601-6

Nagamachi S, Fujita S, Nishii R, Futami S, Tamura S, Mizuta M, et al.: Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2006; 13: 34–42. DOI: https://doi.org/10.1016/j.nuclcard.2005.11.009

https://doi.org/ 10.1016/j.nuclcard.2005.11.009

Treglia G, Cason E: Diagnostic performance of myocardial innervation imaging using MIBG scintigraphy in differential diagnosis

between dementia with lewy bodies and other dementias: a systematic review and ameta-analysis. J Neuroimaging 2012; 22: 111–7.https://doi.org/ 10.1111/j.1552-6569.2010.00532.x DOI: https://doi.org/10.1111/j.1552-6569.2010.00532.x

Guidelines for clinical use of cardiac nuclear medicine (JCS 2010)– digest version –. Circ J Off J Jpn Circ Soc 2012; 76: 761–7. DOI: https://doi.org/10.1253/circj.CJ-88-0019

https://doi.org/ 10.1253/circj.cj-88-0019

Descargas

Publicado

2022-12-01

Cómo citar

1.
Aimo A, Gimelli A. Imágenes de inervación miocárdica: MIBG en práctica clínica. Magna Sci. UCEVA [Internet]. 1 de diciembre de 2022 [citado 19 de enero de 2025];2(2):177-90. Disponible en: http://190.97.80.24/index.php/magnascientia/article/view/48

Número

Sección

Medicina (Medicine)

Artículos similares

También puede {advancedSearchLink} para este artículo.