Aplicación de internet de las cosas (IoT) para entornos de invernadero optimizados

Autores/as

  • Chrysanthos Maraveas Farm Structures Lab, Department of Natural Resources Management and Agricultural Engineering Agricultural University of Athens https://orcid.org/0000-0003-2140-615X
  • Thomas Bartzanas Laboratorio de Estructuras Agrícolas, Departamento de Recursos Naturales e Ingeniería Agrícola, Universidad Agrícola de Atenas, 11855 Atenas, Grecia. https://orcid.org/0000-0002-5962-9909

DOI:

https://doi.org/10.54502/msuceva.v2n2a11

Palabras clave:

Agricultura, agricultura inteligente, Internet de las Cosas, invernaderos, tecnología

Resumen

Esta revisión presenta la investigación más avanzada sobre sistemas IoT para entornos de invernadero optimizados. Los datos fueron analizados usando métodos descriptivos y estadísticos para inferir relaciones entre Internet de las cosas (IoT), tecnologías emergentes, agricultura de precisión, agricultura 4.0 y mejoras en la agricultura comercial. La discusión se sitúa en el contexto más amplio de IoT en la mitigación de los efectos adversos del cambio climático y el calentamiento global en la agricultura a través de la optimización de parámetros críticos como la temperatura y la humedad, la adquisición inteligente de datos, el control basado en reglas y la resolución de las barreras para la adopción comercial de sistemas IoT en la agricultura. Los recientes eventos meteorológicos severos e inesperados han contribuido a los bajos rendimientos y pérdidas agrícolas; este es un desafío que se puede resolver a través de la agricultura de precisión mediada por tecnología. Los avances tecnológicos han contribuido con el tiempo al desarrollo de sensores para la prevención de heladas, el control remoto de cultivos, la prevención de riesgos de incendio, el control preciso de nutrientes en cultivos de invernadero sin suelo, la autonomía energética mediante el uso de energía solar y la alimentación, el sombreado y la iluminación inteligentes. control para mejorar los rendimientos y reducir los costos operativos. Sin embargo, abundan los desafíos particulares, incluida la adopción limitada de tecnologías inteligentes en la agricultura comercial, el precio y la precisión de los sensores. Las barreras y los desafíos deberían ayudar a guiar futuros proyectos de investigación y desarrollo y aplicaciones comerciales.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Chrysanthos Maraveas , Farm Structures Lab, Department of Natural Resources Management and Agricultural Engineering Agricultural University of Athens

El Dr. Maraveas obtuvo su PhD en Ingeniería Civil de la Universidad de Manchester, Reino Unido, en 2015; MSc. en Ingeniería del Imperial College de Londres, Reino Unido, de la Universidad de Swansea, Reino Unido, y de la Universidad Demócrito de Tracia, Grecia. Fue investigador posdoctoral en la Universidad de Lieja y la Universidad de Patras. Cuenta con una experiencia de más de 20 años como consultor de ingeniería estructural y director técnico de infraestructuras. Es miembro de la Institución de Ingenieros Civiles del Reino Unido e ingeniero del colegiado en Grecia y el Reino Unido. Es profesor asistente en el Departamento de Recursos Naturales e Ingeniería Agrícola de la Universidad Agrícola de Atenas.

 

Thomas Bartzanas, Laboratorio de Estructuras Agrícolas, Departamento de Recursos Naturales e Ingeniería Agrícola, Universidad Agrícola de Atenas, 11855 Atenas, Grecia.

Profesor Asociado y Director del Laboratorio de Estructuras Agrícolas en la Universidad Agrícola de Atenas (AUA) en Grecia e Investigador colaborador en el Instituto de Bioeconomía y Agrotecnología (IBO) del Centro de Investigación y Tecnología-Hellas (CERTH). Su área de investigación se centra en sistemas agrícolas de ambiente controlado (cultivos y ganadería), análisis y modelado de sistemas en agricultura y evaluación de impacto ambiental de sistemas agrícolas utilizando el enfoque del ciclo de vida. Actúa actualmente como presidente en la acción COST de LivAge que se ocupa de las emisiones para edificios de ganado y vicepresidente y representante de organizaciones académicas/de investigación en la plataforma tecnológica Food for Life en Grecia coordinada por la Federación de industrias alimentarias griegas (SEVT).

Citas

Wang, K.; Shiong Khoo, K.; Leong, H.Y.; Nagarajan, D.; Chew, K.W.; Ting, H.Y.; Selvarajoo, A.; Chang, J.-S.; Show, P.L. How does the Internet of Things (IoT) help in microalgae biorefinery? Biotechnol. Adv. 2021, 107819. https://doi.org/10.1016/j.biotechadv.2021.107819 DOI: https://doi.org/10.1016/j.biotechadv.2021.107819

Lova Raju, K.; Vijayaraghavan, V. IoT Technologies in Agricultural Environment: A Survey. Wirel. Pers. Commun. 2020, 113, 2415–2446.

https://doi.org/10.1007/s11277-020-07334-x DOI: https://doi.org/10.1007/s11277-020-07334-x

Castañeda-Miranda, A.; Castaño-Meneses, V.M. Internet of things for smart farming and frost intelligent control in greenhouses. Comput. Electron. Agric. 2020, 176, 105614. https://doi.org/10.1016/j.compag.2020.105614 DOI: https://doi.org/10.1016/j.compag.2020.105614

Rayhana, R.; Xiao, G.; Liu, Z. Internet of Things Empowered Smart Greenhouse Farming. IEEE J. Radio Freq. Identif. 2020, 4, 195–211

https://doi.org/10.1109/JRFID.2020.2984391 DOI: https://doi.org/10.1109/JRFID.2020.2984391

Zhang, Y.; Geng, P.; Sivaparthipan, C.B.; Muthu, B.A. Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustain. Energy Technol. Assess. 2021, 45, 100986. https://doi.org/10.1016/j.seta.2020.100986 DOI: https://doi.org/10.1016/j.seta.2020.100986

Raj, M.; Gupta, S.; Chamola, V.; Elhence, A.; Garg, T.; Atiquzzaman, M.; Niyato, D. A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. J. Netw. Comput. Appl. 2021, 187, 103107. https://doi.org/10.1016/j.jnca.2021.103107 DOI: https://doi.org/10.1016/j.jnca.2021.103107

Sagheer, A.; Mohammed, M.; Riad, K.; Alhajhoj, M. A Cloud-Based IoT Platform for Precision Control of Soilless Greenhouse Cultivation. Sensors 2020, 21, 223. https://doi.org/10.3390/s21010223 DOI: https://doi.org/10.3390/s21010223

Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91.

https://doi.org/10.1016/j.cities.2019.01.032 DOI: https://doi.org/10.1016/j.cities.2019.01.032

Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of Artificial Intelligence and Machine learning in smart cities.

Comput. Commun. 2020, 154, 313–323. https://doi.org/10.1016/j.comcom.2020.02.069 DOI: https://doi.org/10.1016/j.comcom.2020.02.069

Gai, H.; Beath, J.; Fang, J.; Lou, H.H. Alternative emission monitoring technologies and industrial internet of things–based process monitoring technologies for achieving operational excellence. Curr. Opin. Green Sustain. Chem. 2020, 23, 31–37.

https://doi.org/10.1016/j.cogsc.2020.04.009 DOI: https://doi.org/10.1016/j.cogsc.2020.04.009

Sahraei, N.; Watson, S.; Sofia, S.; Pennes, A.; Buonassisi, T.; Peters, I.M. Persistent and adaptive power system for solar powered sensors of Internet of Things (IoT). Energy Procedia 2017, 143, 739–741. https://doi.org/10.1016/j.egypro.2017.12.755 DOI: https://doi.org/10.1016/j.egypro.2017.12.755

Agrawal, H.; Prieto, J.; Ramos, C.; Corchado, J.M. Smart feeding in farming through IoT in silos. Adv. Intell. Syst. Comput. 2016, 530, 355–366. https://doi.org/10.1007/978-3-319-47952-1_28 DOI: https://doi.org/10.1007/978-3-319-47952-1_28

Singh, R.K.; Berkvens, R.;Weyn, M. Energy EfficientWireless Communication for IoT Enabled Greenhouses. In Proceedings of the 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 7–11 January 2020; 2020, pp. 885–887. DOI: https://doi.org/10.1109/COMSNETS48256.2020.9027392

Chiesa, G.; Di Vita, D.; Ghadirzadeh, A.; Muñoz Herrera, A.H.; Leon Rodriguez, J.C. A fuzzy-logic IoT lighting and shading control system for smart buildings. Autom. Constr. 2020, 120, 103397. https://doi.org/10.1016/j.autcon.2020.103397 DOI: https://doi.org/10.1016/j.autcon.2020.103397

Syafarinda, Y.; Akhadin, F.; Fitri, Z.E.; Yogiswara Widiawanl, B.; Rosdiana, E. The Precision Agriculture Based on Wireless Sensor Network with MQTT Protocol. IOP Conf. Ser. Earth Environ. Sci. 2018, 207, 012059. https://doi.org/10.1088/1755-1315/207/1/012059 DOI: https://doi.org/10.1088/1755-1315/207/1/012059

Bo, Y.; Wang, H. The application of cloud computing and the internet of things in agriculture and forestry. In Proceedings of the 2011 International Joint Conference on Service Sciences, Taipei, Taiwan, 25–27 May 2011; Volume 2011, pp. 168–172. DOI: https://doi.org/10.1109/IJCSS.2011.40

Patil, V.C.; Al-Gaadi, K.A.; Biradar, D.P.; Rangaswamy, M. Internet of Things (Iot) and Cloud Computing for Agriculture: An Overview. In Proceedings of the Agro-Informatics and Precision Agriculture (AIPA 2012), Raichur, India; 2012; pp. 292–296-

Rojas, A. Smart Agriculture IoT with Cloud Computing. Rev. Hist. América 2015, 29, 37–66.

Choudhary, S.; Jadoun, R.; Mandoriya, H. Role of Cloud Computing Technology in Agriculture Fields. Computing 2016, 7, 1–7.

Ferkoun, M. Cloud computing helps agriculture industry grow, IBM. 2015.

https://www.ibm.com/blogs/cloud-computing/2015/01/23/cloud-computing-helps-agriculture-industry-grow/

Zhang, X.; Cao, Z.; Dong,W. Overview of Edge Computing in the Agricultural Internet of Things: Key Technologies, Applications, Challenges. IEEE Access 2020, 8, 141748–141761. https://doi.org/ 10.1109/ACCESS.2020.3013005 DOI: https://doi.org/10.1109/ACCESS.2020.3013005

Akhtar, M.N.; Shaikh, A.J.; Khan, A.; Awais, H.; Bakar, E.A.; Othman, A.R. Smart sensing with edge computing in precision agriculture for soil assessment and heavy metal monitoring: A review. Agriculture 2021, 11, 475. https://doi.org/10.3390/agriculture11060475 DOI: https://doi.org/10.3390/agriculture11060475

O’Grady, M.J.; Langton, D.; O’Hare, G.M.P. Edge computing: A tractable model for smart agriculture? Artif. Intell. Agric. 2019, 3,42–51.

https://doi.org/10.1016/j.aiia.2019.12.001 DOI: https://doi.org/10.1016/j.aiia.2019.12.001

Villa-Henriksen, A.; Edwards, G.T.C.; Pesonen, L.A.; Green, O.; Sørensen, C.A.G. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. https://doi.org/10.1016/j.biosystemseng.2019.12.013 DOI: https://doi.org/10.1016/j.biosystemseng.2019.12.013

Madushanki, A.A.R.; Halgamuge, M.N.; Wirasagoda,W.A.H.S.; Syed, A. Adoption of the Internet of Things (IoT) in agriculture and smart farming towards urban greening: A review. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 11–28. https://doi.org/10.14569/IJACSA.2019.0100402 DOI: https://doi.org/10.14569/IJACSA.2019.0100402

US Environmental Protection Agency, Climate Impacts on Agriculture and Food Supply. 2020. https://19january2

snapshot.epa.gov/climate-impacts/climate-impacts-agriculture-and-food-supply_.html

Pack, M.; Mehta, K. Design of affordable greenhouses for East Africa. In Proceedings of the 2012 IEEE Global Humanitarian Technology Conference, Seattle,WA, USA, 21–24 October 2012; Volume 2012, pp. 104–110. DOI: https://doi.org/10.1109/GHTC.2012.66

Kavga, A.; Thomopoulos, V.; Barouchas, P.; Stefanakis, N.; Liopa-Tsakalidi, A. Research on innovative training on smart greenhouse technologies for economic and environmental sustainability. Sustainability 2021, 13, 10536. https://doi.org/10.3390/su131910536 DOI: https://doi.org/10.3390/su131910536

Lara, J.C.D.; Francisco, G.; Rodríguez, S. Low Cost Greenhouse Monitoring System Based on Internet of Things. In Proceedings of the 2019 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Rio, Mexico, 14–17 October 2019; pp. 1–10. DOI: https://doi.org/10.1109/ICEV.2019.8920502

Intergovernmental Panel on Climate Change, Food Security. 2020. https://www.ipcc.ch/srccl/chapter/chapter-5/.

Ratnaparkhi, S.; Khan, S.; Arya, C.; Khapre, S.; Singh, P. Smart agriculture sensors in IOT: A review. Mater. Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.11.138 DOI: https://doi.org/10.1016/j.matpr.2020.11.138

Gross, E.M.; Lahkar, B.P.; Subedi, N.; Nyirenda, V.R.; Lichtenfeld, L.L.; Jakoby, O. Seasonality, crop type and crop phenology influence crop damage by wildlife herbivores in Africa and Asia. Biodivers. Conserv. 2018, 27, 2029–2050.

https://doi.org/10.1007/s10531-018-1523-0 DOI: https://doi.org/10.1007/s10531-018-1523-0

Conover, M.R.; Butikofer, E.; Decker, D.J. “Wildlife damage to crops: Perceptions of agricultural and wildlife leaders in 1957, 1987, and 2017. Wildl. Soc. Bull. 2018, 42, 551–558. https://doi.org/10.1002/wsb.930 DOI: https://doi.org/10.1002/wsb.930

Saiz-rubio, V. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. https://doi.org/10.3390/agronomy10020207 DOI: https://doi.org/10.3390/agronomy10020207

Khudoyberdiev, A.; Ullah, I.; Kim, D. Optimization-assisted water supplement mechanism with energy efficiency in IoT based greenhouse. J. Intell. Fuzzy Syst. 2021, 40, 10163–10182. https://doi.org/10.3233/JIFS-200618 DOI: https://doi.org/10.3233/JIFS-200618

Ullah, I.; Fayaz, M.; Aman, M.; Kim, D.H. An optimization scheme for IoT based smart greenhouse climate control with efficient energy consumption. Computing 2021, 1–25. https://doi.org/10.1007/s00607-021-00963-5 DOI: https://doi.org/10.1007/s00607-021-00963-5

Antony, A.P.; Leith, K.; Jolley, C.; Lu, J.; Sweeney, D.J. A review of practice and implementation of the internet of things (IoT) for smallholder agriculture. Sustainability 2020, 12, 3750. https://doi.org/10.3390/su12093750 DOI: https://doi.org/10.3390/su12093750

Miller, M.A.; Cappuccio, F.P. “A systematic review of COVID-19 and obstructive sleep apnoea. Sleep Med. Rev. 2021, 55, 101382. https://doi.org/10.1016/j.smrv.2020.101382 DOI: https://doi.org/10.1016/j.smrv.2020.101382

Agrawal, N.; Katna, R. Applications of Computing, Automation and Wireless Systems in Electrical Engineering; Springer: Singapore, 2019; Volume 553.

Zamora-Izquierdo, M.A.; Martı, J.A.; Skarmeta, A.F. Intelligent Systems for Environmental Applications Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2018, 177, 4–17. https://doi.org/10.1016/j.biosystemseng.2018.10.014 DOI: https://doi.org/10.1016/j.biosystemseng.2018.10.014

Placidi, P.; Morbidelli, R.; Fortunati, D.; Papini, N.; Gobbi, F.; Scorzoni, A. Monitoring soil and ambient parameters in the iot precision agriculture scenario: An original modeling approach dedicated to low-cost soil water content sensors. Sensors 2021, 21, 5110.

https://doi.org/10.3390/s21155110 DOI: https://doi.org/10.3390/s21155110

Sharma, A.; Singh, P.K.; Kumar, Y. An integrated fire detection system using IoT and image processing technique for smart cities. Sustain. Cities Soc. 2020, 61, 102332. https://doi.org/10.1016/j.scs.2020.102332 DOI: https://doi.org/10.1016/j.scs.2020.102332

Terlau,W.; Hirsch, D.; Blanke, M. Smallholder farmers as a backbone for the implementation of the Sustainable Development Goals. Sustain. Dev. 2019, 27, 523–529. https://doi.org/10.1002/sd.1907 DOI: https://doi.org/10.1002/sd.1907

Lin, Y.; Lin, Y.; Lin, J.; Hung, H. SensorTalk: An IoT device failure detection and calibration mechanism for smart farming. Sensors 2019, 19, 4788. https://doi.org/10.3390/s19214788 DOI: https://doi.org/10.3390/s19214788

Popovi´c, T.; Latinovi´c, N.; Peši´c, A.; Zeˇcevi´c, Ž.; Krstaji´c, B.; Djukanovi´c, S. Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Comput. Electron. Agric. 2017, 140, 255–265. https://doi.org/10.1016/j.compag.2017.06.008 DOI: https://doi.org/10.1016/j.compag.2017.06.008

Navarro, E.; Costa, N.; Pereira, A. A systematic review of iot solutions for smart farming. Sensors 2020, 15, 4231.

https://doi.org/10.3390/s20154231 DOI: https://doi.org/10.3390/s20154231

Maraveas, C.; Bartzanas, T. Sensors for structural health monitoring of agricultural structures. Sensors 2021, 21, 314.

https://doi.org/10.3390/s21010314 DOI: https://doi.org/10.3390/s21010314

Ryder, N.L.; Geiman, J.A.; Weckman, E.J. Hierarchical Temporal Memory Continuous Learning Algorithms for Fire State Determination. Fire Technol. 2021, 57, 2905–2928. https://doi.org/10.1007/s10694-020-01055-0 DOI: https://doi.org/10.1007/s10694-020-01055-0

Castañeda-Miranda, A.; Castaño-Meneses, V.M. Smart frost measurement for anti-disaster intelligent control in greenhouses via embedding IoT and hybrid AI methods. Measurement 2020, 164, 108043. https://doi.org/10.1016/j.measurement.2020.108043 DOI: https://doi.org/10.1016/j.measurement.2020.108043

Teymori-omran, M.; Motevali, A.; Reza, S.; Seyedi, M.; Montazeri, M. Numerical simulation and experimental validation of a photovoltaic thermal system: Performance comparison inside and outside greenhouse. Sustain. Energy Technol. Assess. 2021,46, 101271. https://doi.org/10.1016/j.seta.2021.101271 DOI: https://doi.org/10.1016/j.seta.2021.101271

Ruan, J.; Hu, X.; Huo, X.; Shi, Y.; Chan, F.T.S.;Wang, X.; Mastorakis, G.; Mavromoustakis, C.X.; Zhao, X. “An IoT-based E-business

model of intelligent vegetable greenhouses and its key operations management issues. Neural Comput. Appl. 2020, 32, 15341–15356. https://doi.org/10.1007/s00521-019-04123-x DOI: https://doi.org/10.1007/s00521-019-04123-x

Dahlqvist, M.; Nilsson-Hedman, T. Self-Aligning Solar Panel: Construction of a self-aligning platform for solar panels. 2015. http://www.diva-portal.org/smash/get/diva2:916222/FULLTEXT01.pdf.

Molinara, M.; Bria, A.; De Vito, S.; Marrocco, C. Artificial intelligence for distributed smart systems. Pattern Recognit. Lett. 2021,

, 48–50. https://doi.org/10.1016/j.patrec.2020.12.006 DOI: https://doi.org/10.1016/j.patrec.2020.12.006

Bontsema, J.; Van Henten, E.J.; Gieling, T.H.; Swinkels, G.L.A.M. The effect of sensor errors on production and energy consumption in greenhouse horticulture. Comput. Electron. Agric. 2011, 79, 63–66. https://doi.org/10.1016/j.compag.2011.08.008 DOI: https://doi.org/10.1016/j.compag.2011.08.008

Mtz-Enriqueza, A.I.; Padmasreea, K.P.; Olivab, A.I.; Gomez-Solisc, C.; Coutino-Gonzalezd, E.; Garciae, C.R.; Esparzaf, D.; Olivag, J. Tailoring the detection sensitivity of graphene based flexible smoke sensors by decorating with ceramic microparticles. Sens.Actuators B Chem. 2020, 305, 127466. https://doi.org/10.1016/j.snb.2019.127466 DOI: https://doi.org/10.1016/j.snb.2019.127466

Wan, X.; Zhang, F.; Liu, Y.; Leng, J. CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors. Carbon 2019, 155, 77–87. https://doi.org/10.1016/j.carbon.2019.08.047 DOI: https://doi.org/10.1016/j.carbon.2019.08.047

Shamshiri, R.R.; Hameed, I.A.; Thorp, K.R.; Balasundram, S.K.; Shafian, S.; Fatemieh, M.; Sultan, M.; Mahns, B.; Samiei, S. Greenhouse Automation Using Wireless Sensors and IoT Instruments Integrated with Artificial Intelligence. In Next-Generation Greenhouses for Food Security; Intechopen: London, UK, 2020; pp. 1–20.

Ren, W.; Cheng, H.-M. The global growth of graphene. Nat. Nanotechnol. 2014, 9, 726–730. https://doi.org/10.1038/nnano.2014.229 DOI: https://doi.org/10.1038/nnano.2014.229

Zhong, Y.L.; Tian, Z.; Simon, G.P.; Li, D. Scalable production of graphene via wet chemistry: Progress and challenges. Mater. Today 2015, 18, 73–78. https://doi.org/10.1016/j.mattod.2014.08.019 DOI: https://doi.org/10.1016/j.mattod.2014.08.019

Deng, B.; Liu, Z.; Peng, H. Toward Mass Production of CVD Graphene Films. Adv. Mater. 2019, 31, 1800996.

https://doi.org/10.1002/adma.201800996 DOI: https://doi.org/10.1002/adma.201800996

Cisco and the International Telecommunication Union (ITU), Harnessing the Internet of Things for Global Development. 2015. [Internet]. https://www.itu.int/en/action/broadband/Documents/Harnessing-IoT-Global-Development.pdf.

Ruan, J.; Jiang, H.; Zhu, C.; Hu, X.; Shi, Y.; Liu, T.; Rao, W.; Chan, F.T.S. Agriculture IoT: Emerging Trends, Cooperation Networks,

and Outlook. IEEE Wirel. Commun. 2019, 26, 56–63. https://doi.org/10.1109/MWC.001.1900096 DOI: https://doi.org/10.1109/MWC.001.1900096

World Bank. Individuals Using the internet (% of population); World Bank: Washington, DC, USA, 2020. [Internet].

https://data.worldbank.org/indicator/IT.NET.USER.ZS. https://doi.org/10.1051/nss/2015034 DOI: https://doi.org/10.1051/nss/2015034

Goedde, L.; Katz, J.; Ménard, A.; Revellat, J. “Agriculture’s Connected Future: How Technology can Yield New Growth,” McKinsey and Company. 2020. [Internet]. https://www.mckinsey.com/industries/agriculture/our-insights/agriculturesconnected-

future-how-technology-can-yield-new-growth

OneWeb. Connect with Confidence. 2021. [Internet]. https://oneweb.net/our-markets

Starlink. High-Speed, Low Latency Broadband Internet. 2020. [Internet]. https://www.starlink.com/

Sinha, A.; Shrivastava, G.; Kumar, P. Architecting user-centric internet of things for smart agriculture. Sustain. Comput. Inform. Syst. 2019, 23, 88–102. https://doi.org/10.1016/j.suscom.2019.07.001 DOI: https://doi.org/10.1016/j.suscom.2019.07.001

Mordor Intelligence. Smart Greenhouse Market—Growth, Trends, COVID-19 Impact, and Forecasts (2021—2026). 2021. [Internet].

https://www.researchandmarkets.com/reports/4472754/global-smart-homes-market-growth-trends-covid

Panchenko, V.; Izmailov, A.; Kharchenko, V.; Lobachevskiy, Y. Photovoltaic Solar Modules of Different Types and Designs for Energy Supply. Int. J. Energy Optim. Eng. 2020, 9, 74–94. https://doi.org/10.4018/IJEOE.2020040106 DOI: https://doi.org/10.4018/IJEOE.2020040106

Kharchenko, V.; Panchenko, V.; Tikhonov, P.V.; Vasant, P. Cogenerative PV Thermal Modules of Different Design for Autonomous

Heat and Electricity Supply. In Handbook of Research on Renewable Energy and Electric Resources for Sustainable Rural Development;

IGI Global: Hershey, PA, USA, 2018.

Jain, P.; Raina, G.; Sinha, S.; Malik, P.; Mathur, S. Agrovoltaics: Step towards sustainable energy-food combination. Bioresour Technol. Rep. 2021, 15, 100766. https://doi.org/10.1016/j.biteb.2021.100766 DOI: https://doi.org/10.1016/j.biteb.2021.100766

Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.;Weselek, A.; Bauerle, A.; Högy, P.; et al. Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Appl.Energy 2020, 265, 114737. https://doi.org/10.1016/j.apenergy.2020.114737 DOI: https://doi.org/10.1016/j.apenergy.2020.114737

Willockx, B. Combining photovoltaic modules and food crops: First agrovoltaic prototype in Belgium. Eur Assoc Dev Renew Energies Environ Power Qual 2020, 18. https://doi.org/10.24084/repqj18.291 DOI: https://doi.org/10.24084/repqj18.291

Caro, M.P.; Ali, M.S.; Vecchio, M.; Giaffreda, R. Blockchain-based traceability in Agri-Food supply chain management: A practical implementation. In Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture—Tuscany (IOT Tuscany), Tuscany, Italy, 8–9 May 2018; pp. 1–4. DOI: https://doi.org/10.1109/IOT-TUSCANY.2018.8373021

Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and Privacy for Green IoT-Based Agriculture: Review, Blockchain

Solutions, and Challenges. IEEE Access 2020, 8, 32031–32053. https://doi.org/10.1109/ACCESS.2020.2973178 DOI: https://doi.org/10.1109/ACCESS.2020.2973178

Descargas

Publicado

2022-12-01

Cómo citar

1.
Maraveas C, Bartzanas T. Aplicación de internet de las cosas (IoT) para entornos de invernadero optimizados. Magna Sci. UCEVA [Internet]. 1 de diciembre de 2022 [citado 19 de enero de 2025];2(2):260-75. Disponible en: http://190.97.80.24/index.php/magnascientia/article/view/57

Número

Sección

Ciencias Biológicas y Agrícolas (Biological and Agricultural Sciences)

Artículos similares

También puede {advancedSearchLink} para este artículo.