Unraveling mosaic viruses in contemporary agriculture: In-depth insights on characterization, impact, diagnosis, treatment, and management

Autores/as

  • John Edinson Herrera Gálvez Coordinación de Urbanismo Táctico. Alcaldía Local de Kennedy: Bogotá, Distrito Capital, Colombia.
  • Felipe Bravo-Osorio Independent Researcher, Bogotá, Colombia

DOI:

https://doi.org/10.54502/msuceva.v3n1a11

Palabras clave:

Agronomy, agriculture, mosaic, plants, virology, virus

Resumen

Mosaic viruses are a constant concern for the agricultural sector. They pose a real threat to both food and ornamental crops, causing huge economic losses and even threatening food security in many regions. In this article, we will present a general overview of these viruses: their characteristics, transmission mechanisms, effects on crops and available control methods. We will see that one of the main difficulties in dealing with mosaic viruses is their diversity and wide host range. In addition, the lack of effective treatment alternatives and the practical challenges of diagnosing different mosaic virus species require constant epidemiological vigilance to prevent their spread. We will first present a general characterisation of mosaic viruses as an informal group of viruses belonging to tens of different taxa. We will then review the main symptoms of mosaic virus infection (hence the name "mosaic"), diagnostic methods, host range, transmission mechanisms and treatment options. Secondly, we will discuss the impact of these viruses on ornamental and food crops. Finally, we will look at some possible strategies for infection management and control.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

John Edinson Herrera Gálvez, Coordinación de Urbanismo Táctico. Alcaldía Local de Kennedy: Bogotá, Distrito Capital, Colombia.

Environmental Engineer from the Unidad Central del Valle del Cauca-UCEVA, Colombia. Master in Neuropsychology and Education from the International University of La Rioja Spain, HSEQ Auditor, with studies in Pedagogy from the University Minuto de Dios. He has worked as an academic coordinator in different institutions, external consultant for day-care centres in the Colombian territory for the certification of their operation, as a research consultant for neuropsychology and engineering masters in different universities. His research has focused on environmental issues, which are of great importance for current legislation and educational integration in Colombia. Civil servant in urban and regional planning.

Felipe Bravo-Osorio, Independent Researcher, Bogotá, Colombia

Felipe Bravo-Osorio is currently an independent researcher, interested in Ethics, Philosophy of Science, Philosophy of Mathematics and Metaphysics. He holds a doctorate in philosophy from the University of Paris Sorbonne, a master's degree in logic and philosophy of science from the same university, and a master's degree in international studies from the University Sorbonne Nouvelle. He has worked as a university professor and researcher in Colombia and France. His publications focus on the philosophy of ecology, environmental ethics, philosophy of mathematics and education.

Citas

Rizzo DM, Lichtveld M, Mazet JAK, Togami E, Miller SA. Plant health and its effects on food safety and security in a One Health framework: four case studies. One Health Outlook 2021; 3:6.

https://doi.org/10.1186/s42522-021-00038-7 DOI: https://doi.org/10.1186/s42522-021-00038-7

Roig Vila D. Towards sustainable diets: a multidisciplinary approach. Nutr Hosp 2020; 37:2, 43-46. https://doi.org/10.20960/nh.03356 DOI: https://doi.org/10.20960/nh.03356

Makkar GS, Bhatia D, Suri KS, Kaur S. Insect resistance in Rice (Oryza sativa L.): overview on current breeding interventions. Int J Trop Insect Sci 2019; 39:259–72. https://doi.org/10.1007/s42690-019-00038-1 DOI: https://doi.org/10.1007/s42690-019-00038-1

Bacca M, Higuita M, Restrepo A, Gallo Y, Marín M, Gutiérrez P. Analysis of viruses infecting Cape gooseberry (Physalis peruviana L.) in southwestern Antioquia (Colombia) suggests a new member of the genus Trichovirus. Archives of Phytopathology and Plant Protection 2023; 56:647–63. https://doi.org/10.1080/03235408.2023.2216342 DOI: https://doi.org/10.1080/03235408.2023.2216342

Hilaire J, Tindale S, Jones G, Pingarron-Cardenas G, Bačnik K, Ojo M, et al. Risk perception associated with an emerging agri-food risk in Europe: plant viruses in agriculture. Agric Food Secur 2022; 11:21. https://doi.org/10.1186/s40066-022-00366-5 DOI: https://doi.org/10.1186/s40066-022-00366-5

Patil BL. Plant Viral Diseases: Economic Implications. Encyclopedia of Virology, Elsevier; 2021, 81–97.

https://doi.org/10.1016/B978-0-12-809633-8.21307-1 DOI: https://doi.org/10.1016/B978-0-12-809633-8.21307-1

Dias C, Mendes L. Protected Designation of Origin (PDO), Protected Geographical Indication (PGI) and Traditional Speciality Guaranteed (TSG): A bibiliometric analysis. Food Research International 2018; 103:492–508. https://doi.org/10.1016/j.foodres.2017.09.059 DOI: https://doi.org/10.1016/j.foodres.2017.09.059

Mehetre GT, Leo VV, Singh G, Sorokan A, Maksimov I, Yadav MK, et al. Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review. Viruses 2021; 13:412.

https://doi.org/10.3390/v13030412 DOI: https://doi.org/10.3390/v13030412

Jeger M, Beresford R, Bock C, Brown N, Fox A, Newton A, et al. Global challenges facing plant pathology: multidisciplinary approaches to meet the food security and environmental challenges in the mid-twenty-first century. CABI Agriculture and Bioscience 2021; 2:20.

https://doi.org/10.1186/s43170-021-00042-x DOI: https://doi.org/10.1186/s43170-021-00042-x

Sieiro Miranda G, González Marrero A, Rodríguez Lema E, Rodríguez Regal M. Efecto de los macroelementos primarios en la susceptibilidad a enfermedades. Centro Agrícola 2020; 47:66–74.

http://scielo.sld.cu/pdf/cag/v47n3/0253-5785-cag-47-03-66.pdf.

Thresh JM. The Impact of Plant Virus Diseases in Developing Countries. Virus and Virus-like Diseases of Major Crops in Developing Countries, Dordrecht: Springer Netherlands; 2003, 1–30.

https://doi.org/10.1007/978-94-007-0791-7_1 DOI: https://doi.org/10.1007/978-94-007-0791-7_1

Uke A, Tokunaga H, Utsumi Y, Vu NA, Nhan PT, Srean P, et al. Cassava mosaic disease and its management in Southeast Asia. Plant Mol Biol 2022; 109:301–11. https://doi.org/10.1007/s11103-021-01168-2 DOI: https://doi.org/10.1007/s11103-021-01168-2

Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host, 2019, 1–64.

https://doi.org/10.1016/bs.aivir.2019.05.001 DOI: https://doi.org/10.1016/bs.aivir.2019.05.001

Elena SF, García-Arenal F. Plant Virus Adaptation to New Hosts: A Multi-scale Approach, 2023, 167–96. https://doi.org/10.1007/978-3-031-15640-3_5 DOI: https://doi.org/10.1007/978-3-031-15640-3_5

Mo Q, Lv B, Sun Y, Wu X, Song L, Cai R, et al. Screening and production of dsRNA molecules for protecting Cucumis sativus against Cucumber mosaic virus through foliar application. Plant Biotechnol Rep 2022; 16:409–18. https://doi.org/10.1007/s11816-022-00750-4 DOI: https://doi.org/10.1007/s11816-022-00750-4

McLeish MJ, Fraile A, García-Arenal F. Evolution of plant–virus interactions: host range and virus emergence. Curr Opin Virol 2019; 34:50–5. https://doi.org/10.1016/j.coviro.2018.12.003 DOI: https://doi.org/10.1016/j.coviro.2018.12.003

Morales Soto A, Lamz Piedra A. Métodos de mejora genética en el cultivo del frijol común (Phaseolus vulgaris L.) frente al Virus del Mosaico Dorado Amarillo del Frijol (BGYMV). Cultivos Tropicales 2020;41: e10.

http://scielo.sld.cu/pdf/ctr/v41n4/en_1819-4087-ctr-41-04-e10.pdf

Scholthof K-B. Tobacco mosaic virus. Plant Health Instructor 1997. https://doi.org/10.1094/PHI-I-2000-1010-01 DOI: https://doi.org/10.1094/PHI-I-2000-1010-01

Jacquemond M. Cucumber Mosaic Virus, 2012, 439–504.

https://doi.org/10.1016/B978-0-12-394314-9.00013-0 DOI: https://doi.org/10.1016/B978-0-12-394314-9.00013-0

Morozov SY, Agranovsky AA. Alphaflexiviruses (Alphaflexiviridae). Encyclopedia of Virology, Elsevier; 2021, 140–8.

https://doi.org/10.1016/B978-0-12-809633-8.21526-4 DOI: https://doi.org/10.1016/B978-0-12-809633-8.21526-4

Creager ANH. Tobacco Mosaic Virus and the History of Molecular Biology. Annu Rev Virol 2022; 9:39–55. https://doi.org/10.1146/annurev-virology-100520-014520 DOI: https://doi.org/10.1146/annurev-virology-100520-014520

Saunders K, Thuenemann EC, Peyret H, Lomonossoff GP. The Tobacco Mosaic Virus Origin of Assembly Sequence is Dispensable for Specific Viral RNA Encapsidation but Necessary for Initiating Assembly at a Single Site. J Mol Biol 2022; 434:167873.

https://doi.org/10.1016/j.jmb.2022.167873 DOI: https://doi.org/10.1016/j.jmb.2022.167873

Gutiérrez P, Rivillas A, Tejada D, Giraldo S, Restrepo A, Ospina M, et al. PVDP: A portable open source pipeline for detection of plant viruses in RNAseq data. A case study on potato viruses in Antioquia (Colombia). Physiol Mol Plant Pathol 2021; 113:101604.

https://doi.org/10.1016/J.PMPP.2021.101604 DOI: https://doi.org/10.1016/j.pmpp.2021.101604

Hechavarria M. Genotipificación y fuentes de resistencia de los agentes causales de virus del mosaico y hoja amarilla de la caña de azúcar. Anales de La Academia de Ciencias de Cuba 2018; 8:1–6.

https://revistaccuba.sld.cu/index.php/revacc/article/view/363/362

Perales-Rosas D, Hernández-Pérez R, Guillén-Sánchez D, López-Martínez V, Alia-Tejacal I, Andrade-Rodríguez M, et al. Detection of sugarcane yellow leaf virus and sugarcane mosaic virus in sorghum (Sorghum bicolor (L.) Moench) in the state of Morelos, México. Scientia Agropecuaria 2018; 9:423–7.

https://doi.org/10.17268/sci.agropecu.2018.03.14 DOI: https://doi.org/10.17268/sci.agropecu.2018.03.14

Uke A, Khin S, Kobayashi K, Satou T, Kim O-K, Hoat TX, et al. Detection of Sri Lankan cassava mosaic virus by loop-mediated isothermal amplification using dried reagents. J Virol Methods 2022; 299:114336. https://doi.org/10.1016/j.jviromet.2021.114336 DOI: https://doi.org/10.1016/j.jviromet.2021.114336

Tseliou E, Chondrogiannis C, Kalachanis D, Goudoudaki S, Manoussopoulos Y, Grammatikopoulos G. Integration of biophysical photosynthetic parameters into one photochemical index for early detection of Tobacco Mosaic Virus infection in pepper plants. J Plant Physiol 2021; 267:153542. https://doi.org/10.1016/j.jplph.2021.153542 DOI: https://doi.org/10.1016/j.jplph.2021.153542

Melcher U, Lewandowski DJ, Dawson WO. Tobamoviruses (Virgaviridae). Encyclopedia of Virology, Elsevier; 2021, 734–42.

https://doi.org/10.1016/B978-0-12-809633-8.21529-X DOI: https://doi.org/10.1016/B978-0-12-809633-8.21529-X

Liu HW, Luo LX, Li JQ, Liu PF, Chen XY, Hao JJ. Pollen and seed transmission of Cucumber green mottle mosaic virus in cucumber. Plant Pathol 2014; 63:72–7. https://doi.org/10.1111/ppa.12065

Xu Y, Zhang S, Shen J, Wu Z, Du Z, Gao F. The phylogeographic history of tomato mosaic virus in Eurasia. Virology 2021; 554:42–7.

https://doi.org/10.1016/j.virol.2020.12.009 DOI: https://doi.org/10.1016/j.virol.2020.12.009

Meena RP, Minipara D, Choyal P, Kalariya KA, Saran PL, Roy S. Detection and molecular characterization of cucumber mosaic virus infecting Tylophora indica (Burm. f. Merrill). J Appl Res Med Aromat Plants 2022; 30:100391. https://doi.org/10.1016/j.jarmap.2022.100391 DOI: https://doi.org/10.1016/j.jarmap.2022.100391

Iftikhar Y, Ullah MI, Sajid A, Bakhtawar F. Virus-vector interaction and transmission in plants. Plant RNA Viruses, Elsevier; 2023, 273–84. https://doi.org/10.1016/B978-0-323-95339-9.00011-9 DOI: https://doi.org/10.1016/B978-0-323-95339-9.00011-9

Singh S, Awasthi LP, Jangre A, Nirmalkar VK. Transmission of plant viruses through soil-inhabiting nematode vectors. Applied Plant Virology, Elsevier; 2020, 291–300. https://doi.org/10.1016/B978-0-12-818654-1.00022-0 DOI: https://doi.org/10.1016/B978-0-12-818654-1.00022-0

Osei MK, Adjebeng-Danquah J, Bediako KA, Melomey LD, Agyare RY, Annor B, et al. Origin, evolution and bottlenecks of geminiviruses. Geminivirus : Detection, Diagnosis and Management, Elsevier; 2022, 79–93. https://doi.org/10.1016/B978-0-323-90587-9.00033-X DOI: https://doi.org/10.1016/B978-0-323-90587-9.00033-X

Liu HW, Luo LX, Li JQ, Liu PF, Chen XY, Hao JJ. Pollen and seed transmission of Cucumber green mottle mosaic virus in cucumber. Plant Pathol 2014; 63:72–7. https://doi.org/10.1111/ppa.12065 DOI: https://doi.org/10.1111/ppa.12065

Sangeeta, Kumar RV, Yadav BK, Bhatt BS, Krishna R, Krishnan N, et al. Diverse begomovirus-betasatellite complexes cause tomato leaf curl disease in the western India. Virus Res 2023; 328:199079.

https://doi.org/10.1016/j.virusres.2023.199079 DOI: https://doi.org/10.1016/j.virusres.2023.199079

Loesch-Fries LS. Alfalfa Mosaic Virus (Bromoviridae). Encyclopedia of Virology, Elsevier; 2021, 132–9. https://doi.org/10.1016/B978-0-12-809633-8.21328-9 DOI: https://doi.org/10.1016/B978-0-12-809633-8.21328-9

Zerbini FM, Ribeiro SG. Bean Golden Mosaic Virus and Bean Golden Yellow Mosaic Virus (Geminiviridae). Encyclopedia of Virology, Elsevier; 2021, 192–9. https://doi.org/10.1016/B978-0-12-809633-8.21237-5 DOI: https://doi.org/10.1016/B978-0-12-809633-8.21237-5

Xue B, Shang J, Yang J, Zhang L, Du J, Yu L, et al. Development of a multiplex RT-PCR assay for the detection of soybean mosaic virus, bean common mosaic virus and cucumber mosaic virus in field samples of soybean. J Virol Methods 2021; 298:114278.

https://doi.org/10.1016/j.jviromet.2021.114278 DOI: https://doi.org/10.1016/j.jviromet.2021.114278

Kannan M, Ismail I, Bunawan H. Maize Dwarf Mosaic Virus: From Genome to Disease Management. Viruses 2018; 10:492.

https://doi.org/10.3390/v10090492 DOI: https://doi.org/10.3390/v10090492

Luo Y, Qin C, Qiu H, Zhang X, Tang X, Luo X, et al. Novel microRNAs associated with the immune response to cucumber mosaic virus in hot pepper (Capsicum annuum L.). Physiol Mol Plant Pathol 2023; 124:101963. https://doi.org/10.1016/j.pmpp.2023.101963 DOI: https://doi.org/10.1016/j.pmpp.2023.101963

Verdin E, Wipf-Scheibel C, Gognalons P, Aller F, Jacquemond M, Tepfer M. Sequencing viral siRNAs to identify previously undescribed viruses and viroids in a panel of ornamental plant samples structured as a matrix of pools. Virus Res 2017; 241:19–28.

https://doi.org/10.1016/j.virusres.2017.05.019 DOI: https://doi.org/10.1016/j.virusres.2017.05.019

de Kock M.J.D., Stijger CCMM, Pham KTK, Lemmers MEC, van Dam M. Non-persistent TBV transmission in correlation to aphid population dynamics in tulip flower bulbs. Acta Hortic 2011:191–7.

https://doi.org/10.17660/ActaHortic.2011.901.24 DOI: https://doi.org/10.17660/ActaHortic.2011.901.24

Konakalla NC, Masarapu H, Voloudakis AE. Molecular biology and management of tobacco mosaic virus. Plant RNA Viruses, Elsevier; 2023, 173–91. https://doi.org/10.1016/B978-0-323-95339-9.00005-3 DOI: https://doi.org/10.1016/B978-0-323-95339-9.00005-3

Shanker AK, Bhanu BD, Alluri A, Rajah N, Chavez R, Maheswari M. Chloroplast evolution and genome manipulation. Climate Change and Crop Stress, Elsevier; 2022, 411–40. https://doi.org/10.1016/B978-0-12-816091-6.00001-8 DOI: https://doi.org/10.1016/B978-0-12-816091-6.00001-8

Renukadevi P, Sangeetha B, Malathi VG, Nakkeeran S, Satya VK. Enigmatic emergence of seed transmission of geminiviruses. Geminivirus : Detection, Diagnosis and Management, Elsevier; 2022, 285–306.

https://doi.org/10.1016/B978-0-323-90587-9.00003-1 DOI: https://doi.org/10.1016/B978-0-323-90587-9.00003-1

http://ephytia.inra.fr/en/C/10813/Tobacco-Cucumber-mosaic-virus-CMV

Descargas

Publicado

2023-07-01

Cómo citar

1.
Herrera Gálvez JE, Bravo-Osorio F. Unraveling mosaic viruses in contemporary agriculture: In-depth insights on characterization, impact, diagnosis, treatment, and management . Magna Sci. UCEVA [Internet]. 1 de julio de 2023 [citado 19 de enero de 2025];3(1):116-24. Disponible en: http://190.97.80.24/index.php/magnascientia/article/view/73

Número

Sección

Ciencias Biológicas y Agrícolas (Biological and Agricultural Sciences)

Artículos similares

También puede {advancedSearchLink} para este artículo.